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We prove that the potential q(x) of an indefinite Sturm–Liouville problem on the closed
interval [a,b] with the indefinite weight function w(x) can be determined uniquely by
three spectra, which are generated by the indefinite problem defined on [a,b] and two
right-definite problems defined on [a,0] and [0,b], where point 0 lies in (a,b) and is the
turning point of the weight function w(x).
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1. Introduction

Consider the indefinite Sturm–Liouville problem consisting of the equation

−y′′(x) + q(x)y(x) = λw(x)y(x), x ∈ [a,b], (1.1)

and the following self-adjoint boundary conditions

y′(a) − ha y(a) = 0, (1.2)

y′(b) + hb y(b) = 0, (1.3)

where a < 0 < b, the potential q(x) ∈ L1(a,b) is real-valued and the weight w(x) is real-valued satisfying

xw(x) > 0 (x �= 0),
∣∣w(x)

∣∣′ ∈ AC(a,b). (1.4)

Here, ha,hb ∈ R ∪ {+∞} (hx0 = +∞ is a shorthand notation for the Dirichlet boundary condition y(x0) = 0). It is well
known [4] that the spectrum, denoted by σ(q, w,ha,hb), of this problem consists of a countable infinity of simple eigen-
values which, except a finite numbers of non-real eigenvalues, lie in the real axis and are unbounded from both above and
below.

Given h0 ∈ R ∪ {+∞}, we consider the following interface condition at the turning point x = 0 of weight function w

y′(0) + h0 y(0) = 0. (1.5)

For the potential q(x) and weight w(x), two right-definite Sturm–Liouville problems on [a,0] and [0,b] are generated by

−y′′(x) + q(x)y(x) = −λ
∣∣w(x)

∣∣y(x), x ∈ [a,0), (1.6)
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with boundary conditions (1.2) and (1.5), and

−y′′(x) + q(x)y(x) = λw(x)y(x), x ∈ (0,b], (1.7)

with boundary conditions (1.5) and (1.3), respectively. Clearly, the above two problems are self-adjoint in L2[0,a] and L2[0,b]
respectively and their spectra, denote by σL(q, w,ha,h0) and σR(q, w,h0,hb), consist of a countable infinity of simple real
eigenvalues, where σL(q, w,ha,h0) is bounded from above and σR(q, w,h0,hb) is bounded from below.

For classical inverse Sturm–Liouville problems, Gesztesy and Simon [3] and Pivovarchik [10] proved that, if the three
spectra are pairwise disjoint, then the potential q of a Sturm–Liouville problem can be uniquely determined by the spectra
of the problems on three intervals [0,1], [0,a] and [a,1] for some a ∈ (0,1). Furthermore, [3] gave a counterexample to
show that the pairwise disjoint of the spectra is necessary.

Our purpose of this paper is to extend the results of [3,10] to the above indefinite weight problems and improve the
condition of pairwise disjoint in the left-definite case.

Consider another problem with q(x) replaced by q̃(x), where q̃(x) ∈ L1(a,b) is real-valued. For the remainder of this
paper, we always assume that⎧⎨

⎩
σ(q, w,ha,hb) = σ(q̃, w,ha,hb),

σL(q, w,ha,h0) = σL(q̃, w,ha,h0),

σR(q, w,h0,hb) = σR(q̃, w,h0,hb).

(1.8)

It should be noted that the spectrum σ(q, w,ha,hb) may contain a finite numbers of non-real eigenvalues, but the left-
definite case.

With the above notations, we will prove

Theorem 1. Let a < 0 < b, ha,hb,h0 ∈ R ∪ {+∞} and w(x) satisfy (1.4). If (1.8) holds and the three sets in (1.8) are pairwise disjoint,
then q = q̃ a.e. on [a,b].

Remarks 1. This result extends the results of [3,10] to the indefinite weight problems with one turning point. Indeed, we
need only know two sets in (1.8) are disjoint, because the intersection of any two sets of them must be in the third set, see
Proposition 2.2 in Section 2.

Theorem 2. Let a < 0 < b and w(x) satisfy (1.4). Let q(x), q̃(x) � 0 a.e. on [a,b] and ha,hb ∈ [0,+∞], h0 ∈ R ∪ {∞}. If (1.8) holds
and

μ−0(h0) /∈ σR(q, w,h0,hb), μ+0(h0) /∈ σL(q, w,ha,h0), (1.9)

then q = q̃ a.e. on [a,b]. Here, μ+0(h0) is the least eigenvalue in σR(q, w,h0,hb), μ−0(h0) is the greatest one in σL(q, w,ha,h0).

Remarks 2. Under the assumption about q and ha , hb in Theorem 2, the problem consisting of (1.1)–(1.3) is left-definite,
and the condition of pairwise disjoint of three spectra is replaced by (1.9), which is easier checked. It needs only μ±0(h0)

are not in the intersection of σR(q, w,h0,hb) and σL(q, w,ha,h0). Actually, one needs only μ−0(h0) /∈ σR(q, w,h0,hb) for
h0 � 0 and μ+0(h0) /∈ σL(q, w,ha,h0) for h0 � 0.

Corollary 3. Under the hypotheses of Theorem 2, if h0 = 0 or h0 = ∞ and (1.8) holds, then q = q̃ a.e. on [a,b].

In the case of Corollary 3, it is known [1,12] that the problem consisting of (1.6), and (1.2) and (1.5) is negative definite
and the problem consisting of (1.7), and (1.3) and (1.5) is positive definite. So the disjoint condition (1.9) always holds.

This article is organized as follows. In Section 2, we will give the proof of Theorem 1. In Section 3 we will analyze the
distribution of the eigenvalues of left-definite Sturm–Liouville problem defined on [a,b], and other corresponding right-
definite problems defined on [a,0] and [0,b]. Then, we will prove Theorem 2. The methods used in this work rely on
forward asymptotics of the m-functions, which will be collected in Appendix A.

2. Proof of Theorem 1

In this section, we will prove Theorem 1. The technique which we use to obtain Theorem 1 is an adaptation of the
method discussed by F. Gesztesy and B. Simon in [3].

Apply to (1.1), (1.6) and (1.7) the Liouville transformation

t = t(x) =
x∫

0

√∣∣w(τ )
∣∣dτ , x ∈ [a,b], u(t) = ∣∣w(x)

∣∣1/4
y(x).

The transformed equations are
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−u′′(t) + Q (t)u(t) = λ sign(t)u(t), t ∈ [c,d],
−u′′(t) + Q (t)u(t) = −λu(t), t ∈ [c,0],
−u′′(t) + Q (t)u(t) = λu(t), t ∈ [0,d],

respectively, where c = t(a) = ∫ a
0

√|w(τ )|dτ < 0, d = t(b) = ∫ b
0

√|w(τ )|dτ > 0 and

Q (t) = ∣∣w(x)
∣∣− 1

4
d2

dt2

∣∣w(x)
∣∣ 1

4 + q(x)/
∣∣w(x)

∣∣. (2.1)

The boundary conditions (1.2), (1.3) and (1.5) are transformed to

u′(c) − Hcu(c) = 0, u′(d) + Hdu(d) = 0, u′(0) + H0u(0) = 0,

respectively, where Ht0 = |w(x0)|− 1
2 hx0 − |w(x0)| 1

4 [ d
dt |w(x)| 1

4 ]x=x0 (x0 = a,0,b are corresponding to t0 = c,0,d). It is clear
that σ(Q , sign(x), Hc, Hd) = σ(q, w,ha,hb), σL(Q ,−1, Hc, H0) = σL(q, w,ha,h0), σR(Q ,1, H0, Hd) = σR(q, w,h0,hb). This
shows that the Liouville transformation does not change the spectra of the above three Sturm–Liouville problems. By (2.1),
q(x) and Q (t) determine uniquely each other, when w(x) is given. So we need only prove that Theorem 1 holds in the case
of w(x) = sign(x).

In order to prove Theorem 1, we need the following lemma on asymptotics, poles and residues determining a meromor-
phic Herglotz function, see [3, Theorem 2.3].

Lemma 2.1. (See [3].) Let f1(z) and f2(z) be two meromorphic Herglotz functions with identical sets of poles and residues, respectively.
If

f1(ix) − f2(ix) → 0, as x → ∞,

then f1 = f2 .

Proof of Theorem 1. Let v−(x, λ) be the solution of

−y′′(x) + q(x)y(x) = −λy(x), x ∈ [a,0],
which satisfies the initial conditions

v−(a) = 1, v ′−(a) = ha,

for ha �= +∞ or

v−(a) = 0, v ′−(a) = 1

for ha = +∞. Similarly, v+(x, λ) is the solution of

−y′′(x) + q(x)y(x) = λy(x), x ∈ [0,b],
satisfies the initial conditions

v+(b) = 1, v ′+(b) = −hb, (2.2)

for hb �= +∞ or

v+(b) = 0, v ′+(b) = −1,

for hb = +∞. It is known [11, p. 11] that v±(x, λ) and v ′±(x, λ) are entire functions of λ of order 1
2 for any fixed x.

Define the Weyl m-functions [3]

m−(λ) = − v ′−(0, λ)

v−(0, λ)
, m+(λ) = v ′+(0, λ)

v+(0, λ)
, (2.3)

both m−(λ) and m+(λ) are the Herglotz functions, that is, analytic functions in the upper half-plane C
+ , with positive

imaginary part.
Let

W (λ) =
∣∣∣∣ v−(0, λ) v+(0, λ)

v ′−(0, λ) v ′+(0, λ)

∣∣∣∣ = v−(0, λ)v ′+(0, λ) − v ′−(0, λ)v+(0, λ). (2.4)

Then W (λ) is an entire function. The zeros of W (λ) are precisely the points of σ(q, w,ha,hb). In fact, if λ∗ ∈ σ(q, w,ha,hb),
then there is a constant k �= 0 such that v+(x, λ∗) = kv−(x, λ∗) (x ∈ [a,b]). Consequently, W (λ∗) = 0 by (2.4). Conversely, if
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W (λ∗) = 0, then there is a constant k such that v+(0, λ∗) = kv−(0, λ∗) and v ′+(0, λ∗) = kv ′−(0, λ∗) by (2.4). We assert that
k �= 0. If not so, v+(x, λ) ≡ 0, by uniqueness theorem of solution, it is in contradiction with (2.2). Hence

ϕ(x) =
{

kv−(x, λ∗), x ∈ [a,0],
v+(x, λ∗), x ∈ [0,b],

is the eigenfunction corresponding to eigenvalue λ∗ ∈ σ(q, sign(x),ha,hb).
Now define a meromorphic function

g(λ) =
⎧⎨
⎩

W (λ)
v−(0,λ)v+(0,λ)

, h0 = ∞,

W (λ)

[v ′−(0,λ)+h0 v−(0,λ)][v ′+(0,λ)+h0 v+(0,λ)] , h0 ∈ R.

It is clear that the set of poles of g(λ) is precisely σL(q, sign(x),ha,h0) ∪ σR(q, sign(x),h0,hb). It should be noted that

W (λ) = v−(0, λ)
[
v ′+(0, λ) + h0 v+(0, λ)

] − [
v ′−(0, λ) + h0 v−(0, λ)

]
v+(0, λ).

So,

g(λ) =
⎧⎨
⎩

v ′+(0,λ)

v+(0,λ)
− v ′−(0,λ)

v−(0,λ)
, h0 = ∞,

− v+(0,λ)

v ′+(0,λ)+h0 v+(0,λ)
+ v−(0,λ)

v ′−(0,λ)+h0 v−(0,λ)
, h0 ∈ R,

= M+(λ) + M−(λ),

where

M+(λ) =
{

m+(λ), h0 = ∞,
1

−h0−m+(λ)
, h0 ∈ R,

M−(λ) =
{

m−(λ), h0 = ∞,
1

h0−m−(λ)
, h0 ∈ R.

(2.5)

It is easy to see that both M+(λ) and M−(λ) are Herglotz functions. Define m̃+(λ), m̃−(λ), M̃+(λ), M̃−(λ) and g̃(λ) in an
analogous manner with q(x) replaced by q̃(x).

Let

F (λ) = g(λ)/g̃(λ).

Then F is an entire function, since g has the same zeros and poles as g̃ , by hypothesis (1.8). For any ε > 0, using Theo-
rems A.1 and A.2 for h0 = ∞; and Theorems A.3 and A.4 for h0 ∈ R, respectively, we infer that

F (λ) = g(λ)/g̃(λ) = 1 + O

(
1√
λ

)

holds in both sectors of ε � arg λ � π − ε and π + ε � argλ � 2π − ε. By Liouville’s theorem, we have

F (λ) ≡ 1,

which therefore concludes

g(λ) = g̃(λ).

Now from (2.5), we see that the poles of M+(λ) and M−(λ) are precisely the points of σL(q, sign(x),ha,h0) and
σR(q, sign(x),h0,hb), respectively. Note that σL(q, sign(x),ha,h0) and σR(q, sign(x),h0,hb) are disjoint. We have

res M+
(
λ∗) = res g

(
λ∗),

for all λ∗ ∈ σR(q, sign(x),h0,hb), which means

res M+
(
λ∗) = res M̃+

(
λ∗),

for all λ∗ ∈ σR(q, sign(x),h0,hb). This, together with Lemma 2.1 and Theorem A.3, gives

M+(λ) = M̃+(λ).

Therefore q(x) = q̃(x) on [0,b] by Borg theorem [2,8,9]. Similarly, we can show q(x) = q̃(x) on [a,0]. Thus, completes the
proof of Theorem 1. �
Proposition 2.2. Under the hypotheses of Theorem 2, the intersection of any two sets in (1.8) must be in the third set.
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Proof. If λ∗ ∈ σL(q, w,ha,h0)∩σR(q, w,h0,hb), then both v−(x, λ∗) and v+(0, λ∗) satisfy the same interface condition (1.5).
This gives W (λ∗) = 0 and λ∗ ∈ σ(q, w,ha,hb).

If λ∗ ∈ σL(q, w,ha,h0) ∩ σ(q, w,ha,hb), then v−(x, λ∗) satisfies all boundary conditions (1.2), (1.5), and (1.3), since
v−(x, λ∗) is the eigenfunction corresponding eigenvalue λ∗ on [a,0] and [a,b]. This concludes that v−(x, λ∗) is the eigen-
function corresponding eigenvalue λ∗ on [0,b]. So λ∗ ∈ σR(q, w,h0,hb).

The case of λ∗ ∈ σL(q, w,ha,h0) ∩ σ(q, w,ha,hb) is similar to the above case. This finishes the proof. �
Proposition 2.2 shows that the condition of pairwise disjoint is equivalent to

σL(q, w,ha,h0) ∩ σR(q, w,h0,hb) = φ.

3. Left-definite case

In this section, we shall prove Theorem 2. For the remainder of this section, we always assume that q(x) � 0 a.e. on [a,b]
and ha,hb � 0. It is known [5,12] that the problem (1.1)–(1.3) is left-definite. Let σ(q, w,ha,hb) = {λn | n ∈ Z

∗ := Z ∪ {−0}}.
Then all of the eigenvalues are real and can be formed as

−∞ ← · · · < λ−n < · · · < λ−1 < λ−0 < 0 < λ0 < λ1 < · · · < λn < · · · → ∞.

Let σL(q, w,ha,h0) = {μ−n(h0) | n ∈ N
∗ := N∪{0}} and σR(q, w,h0,hb) = {μn(h0) | n ∈ N

∗}. There are inequalities among λ±n
and μ±n(0) and μ±n(+∞) as the following lemma.

Lemma 3.1. (See [12].)

μ−n−1(+∞) < λ−n < μ−n(0) < μ−n(+∞),

with μ−0(0) < 0 and

μn(∞) < μn(0) < λn < μn+1(∞),

with μ0(0) > 0.

For general h0 ∈ R, we have the distribution of the eigenvalues as the following lemma.

Lemma 3.2. For any h0 ∈ R, and n ∈ N∗:

(i) μ−n−1(∞) <
λ−n

μ−n(h0)
< μ−n(∞),

with μ−0(0) < 0 and μ−0(∞) = +∞, and

lim
h0→+∞

μ−n(h0) = μ−n−1(∞), lim
h0→−∞

μ−n(h0) = μ−n(∞).

In particular, if h0 � 0, then λ−n < μ−n(h0).

(ii) μn(∞) <
λn

μn(h0)
< μn+1(∞),

with μ0(0) > 0 and μ0(∞) = −∞, and

lim
h0→+∞

μn(h0) = μn(∞), lim
h0→−∞

μn(h0) = μn+1(∞).

In particular, if h0 � 0, then λn > μn(h0).

For convenience and comprehension of reader, see Fig. 1.
Fig. 1 above shows the changing situation of each μ±n(h0) as h0 through the real axis from −∞ to +∞. Here, μN

n
(μD

n , resp.) is a shorthand notation for μn(0) (μn(∞), resp.).

Proof of Lemma 3.2. The above facts are obtained immediately by Lemma 3.1 and the dependence of eigenvalues on the
boundary conditions, see [6,7].

It is easy to see that, in the left-definite case, for any h0, there is at most one common eigenvalue μ+0(h0) or μ−0(h0)

belonging to σR(q, w,h0,hb) and σL(q, w,ha,h0). �
Proof of Theorem 2. If (1.9) holds in the left-definite case, by Lemma 3.2, then σR(q, w,h0,hb) and σL(q, w,ha,h0) are
disjoint. Based on condition (1.8), by Theorem 1 we infer q = q̃ a.e. on [a,b]. �
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Fig. 1. Distribution of the eigenvalues.
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Appendix A. Asymptotic behavior of m-functions

As discussing alone the right-definite problem associated with the equation

−y′′(x) + q(x)y(x) = −λy(x), x ∈ [a,0],
we can obtain the asymptotic behaviors of m−(λ) and M−(λ) from m+(λ) and M+(λ) by redefining the branch

√−λ

(i.e.
√

λ ). When the branch
√

λ has been defined for the right-definite problem associated with the equation

−y′′(x) + q(x)y(x) = λy(x), x ∈ [0,b],
√−λ must be considered in distinct cases of sign about real part of

√
λ.

Let
√

λ = ξ + iη with the argument in [0,π). Then η � 0 and
√−λ = −η + iξ which has the argument in [π/2,3π/2).

As |λ| → ∞, we have known the asymptotic formulas

v+(x, λ) =
{

cos[√λ(b − x)] + O (eη(b−x)/
√

λ ), hb ∈ R,

sin[√λ(b − x)]/√λ + O (eη(b−x)/λ), hb = ∞,

v ′+(x, λ) =
{√

λ sin[√λ(b − x)] + O (eη(b−x)), hb ∈ R,

− cos[√λ(b − x)] + O (eη(b−x)/
√

λ ), hb = ∞,

and

v−(x, λ) =
{

cos[√−λ(x − a)] + O (e|ξ |(x−a)/
√

λ ), ha ∈ R,

sin[√−λ(x − a)]/√−λ + O (e|ξ |(x−a)/λ), ha = ∞,

v ′−(x, λ) =
{−√−λ sin[√−λ(x − a)] + O (e|ξ |(x−a)), ha ∈ R,

cos[√−λ(x − a)] + O (e|ξ |(x−a)/
√

λ ), ha = ∞.

And then, it is easy to obtain the asymptotic formulas of m-functions as the following theorems (see [9]).

Theorem A.1. For any ε > 0, if ε � argλ � 2π − ε, then

m+(λ) = i
√

λ

(
1 + o

(
1√
λ

))
, as λ → ∞.

Theorem A.2. For any ε > 0,

(i) if ε � arg λ � π − ε, then, as λ → ∞,

m−(λ) = −√
λ

(
1 + o

(
1√
λ

))
;

(ii) if π + ε � arg λ � 2π − ε, then, as λ → ∞,

m−(λ) = √
λ

(
1 + o

(
1√
λ

))
.

Proof. Theorem A.1 is the result as a classical Sturm–Liouville problem [9]. It is a corollary of Theorem A.1 in the case (i)
of Theorem A.2 by replacing

√
λ with

√−λ. For the case (ii) of Theorem A.2, we need take the branch −√−λ, such that its
imaginary part is positive. �
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Theorem A.3. Fixed h0 ∈ R. For any ε > 0, if ε � argλ � 2π − ε, then

M+(λ) = i√
λ

(
1 + o

(
1√
λ

))
, as λ → ∞.

Theorem A.4. Fixed h0 ∈ R. For any ε > 0,

(i) if ε � arg λ � π − ε, then, as λ → ∞,

M−(λ) = 1√
λ

(
1 + o

(
1√
λ

))
;

(ii) if π + ε � arg λ � 2π − ε, then, as λ → ∞,

M−(λ) = − 1√
λ

(
1 + o

(
1√
λ

))
.

Theorems A.3 and A.4 are the immediate corollary of Theorems A.1 and A.2.
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